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Abstract—The thermal shock phenomena induced by a rapidly propagating crack tip in a solid medium
was studied recently via the temperature formulation (ASME J. Heat Transfer 112, 21-27 (1990)). In
order to further confirm the unique features obtained in the previous research for the thermal waves
emanating from the crack tip, the present work employs the flux formulation and further examines the
same physical phenomena from a different viewpoint. The thermal shock discontinuities result from the
energy accumuiation in a preferential direction as the speed of the propagating crack tip exceeds the heat
propagation speed in the solid. By employing the flux formulation in the thermal wave model, the present
work investigates the thermal shock formation, the evolutions of the heat affected zone and the thermally
undisturbed zone, and the transition of the r-dependency of the heat flux vector in transition of the thermal
Mach number from the subsonic to the supersonic ranges. The analogy between the temperature and the
heat flux in the near-tip region is established and the thermal shock phenomena are confirmed from a
theoretical point of view.

INTRODUCTION

THE THERMAL wave model describes the process of
heat transport by wave phenomena propagating at a
finite speed in the solid. The physical essence of this
model has been investigated from various points of
view. They include, for example, a collision model
established on the basis of statistical mechanics [2],
identification of the analogy between the random walk
and the diffusion processes [3], modification of ther-
modynamics with fading memory [4], consideration
of special relativity for the heat transport process {5,
6], and an interpretation in terms of kinetic theory of
molecules {7, 8]. In these works, the limitations of
the thermal diffusion model were also examined from
different viewpoints. The mathematical structure of
the field equations in the hyperbolic theory of heat
conduction was also investigated. For a one-dimen-
sional solid carrying the thermal energy with a finite
speed, the research developed in this sense includes
the propagation of thermal waves in semi-infinite
media [9-12], propagation and reflection in a finite
medium [13~15}, the analytical studies on the wave
character under high heat flux [16], the effects of sud-
den change of thermal properties across dissimilar
media in contact [17, 18], and the thermal wave
characteristics across a thin surface layer [19]. The
wave solutions for the hyperbolic heat conduction
equation were also discussed from both analytical
{20] and numerical {21, 22] approaches. Generally
speaking, significant deviations between the diffusion
and the wave models were found in these studies as
(i) the transient time is short, (ii) the operational
temperature is low, and (jii) the temperature gradient
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established in the material volume is large. Condition
(iif) is a common feature for the problems involving
an interface between dissimilar materials, high heat
flux, or a thin surface layer.

In a recent work [1], the fundamentai characteristics
of the thermal wave in the vicinity of a moving crack
tip were investigated. The near-tip remperature was
obtained around the crack tip subjected to a tem-
perature-specified condition at the crack surfaces. The
major findings in ref. [1] can be summarized as
follows. (1) The thermal field around the moving
crack tip can be characterized by a thermal Mach
number (M) which weighs the ratio of the crack speed
(v) to the heat propagation speed (C) in the solid.
Mathematically, M = v/C. (2) At the transonic and in
the supersonic ranges with M > 1, thermal shock waves
are present in the physical domain which separate the
heat gffected zone from the thermally undisturbed zone.
(3) For cases with M 2> 1, the physical domain of the
heat affected zone is 0 < 6 < sin~' (1/M), with the
angle 8 being measured from the crack surface. The
thermal shock waves are located at 8 = +sin—! (1/M)
which is defined as the thermal shock angle. (4) The
near-tip temperature has a discontinuous but finite
change across the surface of the thermal shock wave.
It jumps from a value of 4(M2—1)/M? in the heat
affected zone to the reference value in the thermally
undisturbed zone. As the thermal Mach number M
approaches infinity, the limit value of the dis-
continuity across the shock surface is 4. (5) In tran-
sition of the thermal Mach number from the subsonic,
transonic, to the supersonic ranges, the r-dependency
of the near-tip temperature switches from r'/2, r, to
r®. As the radial distance r measured from the crack tip
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A, B arbitrary constant in the eigenfunction
H(6)

¢ parameter used in the thermal wave
equation, v/2x fm~']

C  speed of heat propagation in the solid
[ms~]

C, heat capacity [kJkg~'°C™'}

k thermal conductivity [Wm™~'°C~']

M thermal Mach number, v/C

n integer in the expression of eigenvalues

heat flux vector and its components in the

ith direction [Wm ™3]

Q.  angular variations of the near-tip heat

flux components, i = 1,2

polar coordinates centered at the crack tip

R instantaneous radius of curvature of the
crack trajectory [m]

s exponent of r for heat flux vector

S general heat source term [Wm™’]

t physical time [s]

T temperature [°C)

v speed of the moving crack fms™'].
Greek symbols

o thermal diffusivity [m?s~']

NOMENCLATURE

y transformation function on the
independent variable 8

r time function in the near-tip temperature
distribution

{ transformed variable from 8

7 dummy variable of integration

¢ polar angle of the moving coordinate
system [deg]

A eigenvalues, exponent of r for the angular
variation of near-tip temperature

¢ moving coordinates centered at the crack
tip, i = 1,2 [m]

Pl mass density [kgm™?]

@ transformation function on the
dependent variable H

@  angular velocity of the moving crack
[rads™'].

Other symbol

v gradient operator [m™'].

Subscripts and superscripts
( ).x‘ a/aén i= 1,2
() quantity in the thermal diffusion model.

approaches zero, the temperature gradient presents a
1/\/r-singularity only in the subsonic range with
M < 1. These salient features are pertinent to the
thermal wave model and cannot be depicted by the
thermal diffusion model.

In the present study, the physical phenomena sum-
marized above from (1) to (5) are to be further exam-
ined by considering the heat flux field around a crack
tip propagating at various speeds in the subsonic,
transonic, and supersonic ranges. Because the heat
flux vector is related to the temperature by an integro-
differential equation in the thermal wave model
(refs. {1, 23-25] for instance), the flux formulation
employed in this work is especially useful if a flux-
specified condition is involved at the crack surfaces.
This special feature of the thermal wave model has
been clearly indicated by Frankel et al. [25].

In summary, the energy and constitutive equations
in the thermal wave model are

-V q+S5=pC,T,
(2/C*)q,+q= ~kVT (1a)

where p is the density of the medium, &k the thermal
conductivity, C, the heat capacity, S the body heat
source, « the thermal diffusivity, and C the finite speed
of heat propagation in the solid. Eliminating either
temperature T or heat flux g from these equations,
respectively, results in a field equation with flux (q) or
temperature (T') representations

V[V-q}-VS = (/0)[(2/C*)q.+q.] (1b)
aV2T+(1/pC S+ (#/C?)S, ) = (/CHT 4+ T,

(o)

An apparent heat source term containing the first-

order derivatives of S with respect to space in the q-

representation and that with respect to time in the 7-
representation are obtained.

HEAT FLUX FORMULATION

The geometrical configuration of the moving crack
under study is shown in Fig. 1. The crack is assumed
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Fii. 1. Geometrical configuration of a moving crack and the
material coordinate system convecting with the crack tip.
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to be in the macroscopic level and propagating with
constant linear and angular velocities (v and w, respec-
tively) along a smooth but arbitrary trajectory in an
infinite medium with finite speed of heat propagation.
The coordinates §; with i = 1, 2 are the Lagrangian
coordinate system convecting with the crack tip which
are respectively the instantaneous tangent and normal
to the crack surface.

Employing the thermal wave model, the use of q-
or T-representations depends on the type of boundary
conditions. This is a situation resulting from a com-
plicated integro-differential relationship between the
temperature and the heat flux vector in the hyperbolic
wave model

¢, = —(C*kjo)exp (- C*t/a)

x J;T.;(n) exp(Cnfw)ydy. (2)

In an earlier work [1], the T-representation has been
adopted to investigate the near-tip behavior of tem-
perature around a moving crack tip with temperature
specified at the crack surface. For the same crack
subject to a flux-specified surface condition, on the
other hand, the g-representation of the energy equa-
tion is more convenient to use {25] which has been
shown by equation (1b)

aV(V @) = (a/C)q.+q, €)

where the energy dissipating from the crack tip into
the surrounding continua has been assumed to be
negligible, namely S(x,, #) = 0, during the formation
of new crack surfaces. Under a description made by
an observer moving with the crack tip, referring to
Fig. 1, the Galilet transformation

§|=x(+3)f and €2=X2 (4)

can be applied and the time derivatives on the right-
hand side of equation (3) are replaced by the material
derivatives

9 = q,—vq,—0(1q:-$:9.1)

Qo = Q=209 +0°q 1, — 0, (g, — 0 —0&2)q..2
+ 04— 0 Q2] +0d(q0 — v -0)q,, —vg;
—v§1q.2]+ 0§24~ $19.2]

+ool 4.2 +9.2-§2q 1} (5

Subscripts i and 7 denote the differentiations with
respect to the spatial coordinates £, and the time vari-
able ¢, respectively. In terms of the indicial notations,
then, the combination of equations (3) and (5) yields

agu = aM’q  + {(#/C* g~ (M?c)g}
+{g—va} —0{819,2- {2911}
+[M?[2eR1{Ss[g01 — (0= 0¢2)g01 1 — 04,2
—0814,12]~ $1[gis2 — 0= 082)g,12 + g,
= 0814221~ 12— $24011)
+0(gi2+ 81902 — 8290010} ©)
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where a thermal Mach number M weighing the ratio
of the crack propagation speed to the heat propa-
gation speed, i.e. v/C, in the solid has been introduced
and ¢ a parameter defined as v/2a. Az the crack is
stationary (v = @ = 0) or the speed of heat propa-
gation in the solid approaches infinity (C — ), M
approaches zero and equation (6) is reduced to that
employing the thermal diffusion model.

By noticing that the ¢,-axis is always normal to the
propagating crack, the eigenstate of equation (6) for
the heat flux components g, are to be determined sub-
ject to the boundary conditions

q2=0 at 52=0 and f[‘<0 (7)
g:=0 at {=0 and &, >0 ®

due to the symmetry of the problem. In the sequel we
shall call the boundaries specified by equations (7)
and (8) the trailing and the leading edges of the moving
crack tip.

THE NEAR-TIP BEHAVIOR OF THE HEAT
FLUX COMPONENT gq;

The field equation (6) is a partial differential equa-
tion with variable coefficients. A general form of the
analytical solution is difficult to obtain. It should be
noted, however, that the near-tip solution in the prob-
lem with a crack always gives the most important
information. Such a solution does not only provide
characteristics of the physical quantities varying in the
neighborhood of the crack tip, but also an efficient
algorithm of using singular tip elements in the finite
element method [26]. In this section, therefore, we
shall make an attempt to find a particular solution
satisfying equations (6)—(8) as the crack tip is closely
approached.

A product form of the solution for ¢, is sought

9:(r.6,0) =rr(nQ(0), i=1,2 ®

with r and 8 being the polar coordinates centered at
the crack tip and I'(¢) and @,(6) the functions govern-
ing the time and the angular dependencies of the near-
tip heat flux components. The coordinates (r, 8) are
especially useful in describing the state of affairs in
the vicinity of the crack tip. As usual, their gradients
relate to those in the §, coordinates according to

g, = (cos0)q,, —(sin0/r)q;s
and

g2 = (sinf)q,, + (cosb/r)q,e, etc. (10)

Substituting equations (9) and (10) into equation (6),
the r-dependency of the terms involved in the resulting
equation can be summarized as follows:

G Q1 ~ P73

915 9i2s Giers $29010 $1Gi12s Eagins ~ P15

@urs §19015 §29025 $19025 29005 Guars $290e1s $30011
$1é2g012s €192 $2Ginns and §igip ~ . (11)
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Multiplying the entire equation by r*~*, we can see
that the terms proportional to ' and 7 are pro-
portional to r and r?, respectively. As r approaches
zero, i.e. in the immediate vicinity of the crack tip,
these terms vanish and the asymptotic form of equa-
tion (6) reduces to

qui=M2qi.l17 With i,j= 1,2. (12)

They are the dominant terms appearing originally in
equation (6) and equation (12) is valid for any func-
tion of I'(¢). The near-tip heat flux components are
characterized by a single parameter M. The time-inde-
pendence of this equation indicates that the near-tip
characteristics of ¢; are the same for a crack pro-
pagating in either the transient or steady state. Also,
we notice that the angular velocity @ of the moving
crack with smooth trajectory has a higher order effect
on the thermal field around the crack tip. These fea-
tures of the near-tip solution are similar to those found
for the displacement field by Achenbach and BaZant
[27] and the near-tip temperature of ref. [1].

Equation (12) can be expressed explicitly in terms
of its components

A=M?)g 14621, =0 (13)

14

In a similar manner to that for obtaining the 7- or
the q-representation for the energy equation, a single
equation governing ¢, can be obtained by eliminating
q, from equations (13) and (14). Combining the
differentiation of equation (13) with respect to &, and
that of equation (14) with respect to ¢,, we obtain

‘?L!22+(1“M2)‘12.1u =0. (15)

A particular form for this equation is

Gri2+qr2a~Miq,, =0,

gr+(1=M%Yg,,, =0 or Vig,=M3y,,
(16)

which is sufficient for our purpose as far as the eigen-
state of the near-tip heat flux is concerned. One should
notice that equation (16) will transit from a parabolic,
elliptic, to a hyperbolic type as the thermal Mach
number transits from the subsonic (M < 1), transonic
(M = 1), to the supersonic (M > 1) ranges. Some
intrinsic variations of the near-tip behavior of ¢, are
thus expected in such a transition. Equation (16) has
the same form as that governing the near-tip tem-
perature around the crack tip [1]. The method of
variable transformation proposed in the previous
study can thus be extended to the present problem in
the full range of the thermal Mach number.

Substituting equation (9) for ¢, into equation (16),
and applying the chain rule given by equation (10),
the angular distribution Q,(8) is found to be governed
by the following equation :

(1~M?sin’ 0)Q;0 —[M*(1~5) 5in20]Q
+s{s+ M} (2—-s)cos?8-1]}Q,=0. (1D
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It is a second-order ordinary differential equation with
variable coeflicients which has to be solved subject to
the boundary conditions

Qz_@=03t6=0 and Qz=03t9=n(18)

as derived from equations (7) and (8). In obtaining
an analytical solution for Q,(6) satisfying equation
(17), the method proposed previously involves a
transformation on the dependent variable from Q, to @

0:(0) = (1—M?*sin’ 6)* *®(9) (19

and another transformation on the independent vari-
able from 8 to 7 governed by

(1 —M?sin® Q)yge—(M?*sin20)y, = 0. (20

The function y(f) and the resulting form of equation
(17) after these transformations depend on the ther-
mal Mach number of the moving crack.

(a) Subsonic range with M < 1. In the case of
M < 1, the function y(8) satisfying equation (20) can
be integrated to give

¥(0) = tan~' [(1—M?)' *tan )
and consequently

76 = (1=MH)"/(1=M?sin?6). Q1)

This is the transformation observed by Achenbach
and Bazant {27] for the out-of-plane displacement
field around a moving crack tip. Similar to the pre-
vious problem involving the near-tip temperature [1].
it is derived analytically from equation (20) for the
present problem. The resulting ® function in the 7
space takes a simple form in this case

0, +50=0. 2)

Subject to boundary condition (18) represented in
terms of functions @ and y

D, =0aty=0 and ®=0aty=+n (23)
the solution for ® can be obtained immediately as

® = Acossy 24

with A being the arbitrary constant in an eigenvalue
system and the eigenvalue s satisfying the following
equation:

s= (2n+1)/2, withintegern=20,1,2,... (25)

The fundamental mode possessing the lowest eigen-
value, namely s = 1/2 corresponding to n = 0, domi-
nates the near-tip behavior of ¢.. As r approaches
zero in the vicinity of the crack tip, we notice that the
terms of r’, with s being shown in equation (25) but
n # 0, will approach zero faster than that of r'/2, Sub-
stituting equation (24) into equation (19) and taking
the inverse transformation from 7 to 8 according te
equations (21), the final form of the solution for 0,(8)
is
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FiG. 2. Angular variations of the near-tip heat flux ¢, at
thermal Mach numbers M = 0, 0.1, 0.5, and 0.9—subsonic
range with M < 1.

Q2:(0) = A[(1 —M?sin*0)"2 +cos 0] 12/,/2,
for M=1 (26)

which governs the angular distribution of ¢, in the
core region. The corresponding expression in the ther-
mal diffusion model can be retrieved by substituting
M by zero in equation (26)

02(0) = A[1 +cos 8]"/,/2. @7

This expression is valid for either a stationary crack
{v = 0) or a medium with the heat propagation speed
being infinity (C — c0). In the present case with
M < 1, it should be noted, referring to equation (9),
that the gradient dg,/dr in both the thermal wave
and the thermal diffusion models displays a near-tip
behavior of 1/,/r.

The graphical representations for Q,(8) and
02(0) with A being unity are shown in Fig. 2. The
angle @ is measured from the leading edge of the
moving crack. As expected, the deviation between the
two models becomes significant as the thermal Mach
number increases. For all the cases with M = 0 (the
diffusion model), 0.1, 0.5, and 0.9, the temperature
reaches its maximum at the leading edge of the moving
crack at 8 = 0°. Also, the Q,-function (and hence the
magnitude of the heat flux component ¢,) decreases
as the thermal Mach number increases.

{b) Supersonic range with M > 1. For the same
crack moving to the right at a speed faster than that
of the heat propagation in the solid, equation (19)
can still be used but the distribution of Q,(6) under
investigation must be confined to the domain of

0gO<sin™' (I/M) or
0<o<tan™ [I/(M2 -1V} (28)

with § being measured in the present case from the
trailing edge of the moving crack, as shown in Fig.

12(8)

[ ] St it
20°

% o
8, Bagraes

Fic. 3. Angular variations of the near-tip heat flux ¢, at
thermal Mach numbers A = 1, 5, and 10—supersonic range
with M > L.

3. For M > 1, alternatively, the transformation y(0)
satisfying equation (20) takes the form

PO = 3in {[(M*- 1) tan 6+ 1)/
[(M*=1)"*tanf—1]}

and

Yo = (M?=1)"?/(1 - M?*sin*0). 29

The corresponding equation to equation (22) for the
®-function can be found as

O,~s’0=0, for M>1. (30

Obviously, the eigenvalue system formulated pre-
viously for M < 1 has a dramatic change for the pre-
sent case. We first notice that the physical domain
represented by equation (28) for M > 1 is identical to
that for the heat affected zone induced by a moving
crack subject to a temperature-specified condition at
the crack surface {1]. Therefore, it is informative to
conclude that the distribution of g, in the hear affected
zone is governed by equations (19), (29), and (30).
While the heat flux components stay at the initial
value (assumed to be zero without loss in generality)
in the rest of the physical domain which is defined as
the thermally undisturbed zone. The heat affected zone
and the thermally undisturbed zone are separated by
a thermal shock wave located at § = sin~' (/M) mea-
sured from the trailing edge of the moving crack. This
is another identical result for a moving crack subject
to either a temperature- or a flux-specified condition
at the crack surface.
Defining now a parameter {

{0 =1+ (M?*~1)"*tan 8}/[1 ~(M*—1)"* tan 6}
3n
such that from equation (29)
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in
y= i§+£1n(§) (32)
with i = ./ —1 and { being greater than zero for 6 in
the domain of the heat affected zone specified by equa-
tion (28). The solution of equation (30) in terms of
the variable { can then be obtained as

O(B)) = cos (sn/2){Aexp [sin ({)/2}
+Bexp[~sin{{)/2]}
+isin (sn/2){A exp {sin ({)/2}
—Bexp[—sin({)/2]}. (33)

Based on the argument that the heat flux vector must
be real, equation (33) gives

sin(sn/2) =0, or s=2n with n=123,...
(34

For a non-trivial solution, therefore, the lowest eigen-
value s in the supersonic case is 2. This result intrin-
sically varies the near-tip behavior of the heat flux
component ¢,. In the subsonic range with M < |, the
r-dependency of g, is /. While in the supersonic
range with M > 1, such a dependency transits to r*
which cannot be depicted by the thermal diffusion
model. Notice also that only one boundary condition
at 8 = 0 (the trailing edge of the moving crack), or
{=1 and y = +i(n/2) according to equation (32),
remains in the present case with M > 1

®=0 at y=+i(n/2) and {=1. (35

Another boundary at & = z (the leading edge of the
moving crack) stays in the thermally undisturbed zone
and the symmetrical condition @, = ®4 = 0 is auto-
matically satisfied for a uniform distribution of ¢,
being zero (the reference value). Substituting equation
(33) into equation (35) renders a result of 4 = —B.
The ®-function in the supersonic range is thus
obtained as

o((©) = B(cm}) 36)

with B being an arbitrary constant, Combining equa-
tion (19) for s = 2 with equation (36) then gives the
angular distribution Q,(6) in the heat affected zone

2:(6) = B(1—-M?*sin*9) ({ - %) (37

which, upon substitution of equation (31), can be
expressed in terms of the variable 8

0:(0) = 2B(M*—-1)'*sin(26), for M>1. (38)

Note that as the thermal shock wave is approached
from the site in the heat affected zone, namely 6 -
sin~' (1/M), the quantity of sin(26) approaches
2(M? -1V M? and we have
0:(0) = 4B(M*~1)/M?, as 6-»sin~! (1/M).
39
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F16. 4. Angular variations of the near-tip heat flux ¢, at the
transonic stage with M = 1.

Equation (39) shows that the heat flux component g,
remains bounded at the thermal shock wave located
at @ = sin™' (1/M) with M > 1, It has a limit value of
4B as M approaches infinity. We also notice that the
heat flux component g, is discontinuous but finite
across the surface of the thermal shock wave, As the
thermal Mach number increases, the 0,-function rep-
resented by equation (38), and hence the heat flux
component ¢, according to equation (9), increases.
Together with the result obtained previously in the
subsonic range that the magnitude of ¢, decreases as
the thermal Mach number increases, thisis a swinging
phenomenon similar to that being found for the tem-
perature variation in transition of the thermal Mach
number from the subsonic to the supersonic ranges
[1]. These phenomena are shown in Fig. 3 with M
being 2, 5, and 10 in the supersonic range.

(¢) Transonic stage with M = 1. As the speed of
the moving crack is the same as that of the heat propa-
gation in the solid, the transformation y(8) degener-

ates into the form of
y(8) = tané. (40)

The equation governing the ®-function in this case
becomes

®, =0 41)
which possesses a solution of the form
®(y) = Ay+ 8. (42)

The angle 8, similar to the supersonic case with M > 1,
is measured from the trailing edge of the moving crack
as shown in Fig. 4. The transonic case is the one for
the onset of thermal shock formation. According to
equation (28), a normal shock starts to form at
# == 90° in the present case with M = 1. The heat
affected zone consequently ranges from 0° to 90° mea-
sured from the crack surface. Only the boundary con-
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dition at 8 = 0°, or y = 0 according to equation (40),
needs to be considered

®=0 at y=0. 43)
From equation (42), we have B = 0 and 4 an arbitrary
constant. Determining the values of s at the transonic
stage relies on the argument made on the boundedness
of the heat flux across the shock surface. This is a
general feature obtained in the supersonic range
{referring to equation (39)) and should be satisfied as
the thermal Mach number approaches 1. Substituting
equation (40) into equation (42} and the result into
equation (19), the Q,-function is thus obtained

Q,(0) = Acos’0tanf, for M=1. (44)
Obviously, the lowest value of s must be equal to |
such that

@:(0) = Asinf, for M=1 (45)
and the angular distribution of @,(8) remains
bounded as 0 approaches 90°. Again, we notice that
the r-dependency of g, represented by equation (9)
switches from 7'/? to r as the thermal Mach number
transits from the subsonic range to the transonic stage.
1t further switches to r? as the thermal Mach number
transits into the supersonic range. The graphical rep-
resentation of @,(6) at M = 1 is shown in Fig. 4.

For the supersonic (case b) and the transonic (case
c) cases with M > 1, as shown in Figs. 3 and 4, the
magnitude of Q,(0) in the heat affected zone decays
from the thermal shock wave to the trailing edge of
the moving crack.

DISCUSSIONS

The angular distribution of the heat flux component g,

The function of Q,(f), referring to equation (9),
governing the angular distribution of the heat flux
component g, around the crack tip can be found
according to the corresponding expressions of Q,()
in the respective ranges of the thermal Mach number.
With the assistance of equation (10), substituting
equation (9) for i = 1 and 2 into equations (13) and
(14) renders a set of coupled equations for Q; and Q,
in the near-tip field. Eliminating the terms containing
(. in these equations then gives a first-order ordinary
differential equation governing Q,(8)

(1-M*sin?8)Q,, + (ié-;-isin 28)Q, =50, (46)

where the function Q,(#) is the corresponding
expression in the subsonic (equation (26)), tran-
sonic (equation (45)), and supersonic (equation (38))
ranges. This equation has an integrating factor
(1—M?sin?@)~"? and its solution can be obtained
immediately as
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0.(8) = s(1 - M?sin® §)?

x er(ﬂ)i(l —MZsin? )+ iidy. (4T)

The r-dependency of éq/0r

On employing Fourier’s law of heat conduction, the
heat flux vector has the same r-dependency as that of
the temperature gradient 8T/0r, as shown by Sih [28]
for example. On employing the thermal wave model,
on the other hand, the r-dependency of the heat flux
vector is the same as that of the temperature itself.
This can be seen by comparing the present results with
those obtained previously for the near-tip temperature
[1]. The r-dependency of dq/dr depends on the thermal
Mach number of the moving crack. It switches from
1//r to r as the thermal Mach number transits from
the subsonic to the supersonic ranges. At the transonic
stage with M = 1, dq/0r is independent of r. As the
radial distance r approaches zero, the quantity dq/ér
presents a 1/,/r-singularity only in the subsonic range
with M < 1 while it is bounded at the transonic and
in the supersonic ranges with M > 1. This result shows
that as the speed of the moving crack exceeds the heat
propagation speed in the solid, the thermal energy
accumulated at the crack tip is not as pronounced.

CONCLUSIONS

Due to the similarity of the mathematical structures
between the temperature (T) and the heat flux (q)
formulations, the physical phenomena of thermal
shock formation are identical for a moving crack sub-
ject to either a temperature- or a flux-specified con-
dition at the crack surface. The thermal shock wave
starts to form at the transonic stage and sweeps
toward the trailing edge of the moving crack as the
thermal Mach number further increases to the super-
sonic range. The thermal shock angle is obtained as
sin~! (1/M) for M 2 1 and the physical domain of the
heat affected zone is found to be 0 < 6 < sin~' (1I/M)
with the angle 6 being measured from the crack
surface. The heat flux components in the heat affected
zone are represented by the combination of equations
(9), (38), (45), and (47) while they stay at a reference
value in the thermally undisturbed zone. Similar to
the temperature in the near field of the crack tip, the
near-tip heat flux aiso has a discontinuous but finite
change across the surfaces of the thermal shock wave.
This is clearly shown by equation (39).

Generally speaking, the physical phenomena of
thermal shock formation induced by a moving crack
are quite similar to those induced by a moving heat
source [23, 24]. The difference, however, lies in that
both the temperature and the heat flux vector
approach infinity as the thermal shock wave induced
by a moving heat source is approached from the site in
the heat affected zone, while these physical quantities
keep finite thereby if the thermal shock wave is
induced by a moving crack. In transition of the ther-
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FIG. 5. A chunk of sponge impinged by (a) a stationary water
jet and (b) a moving water jet with a velocity v.

mal Mach number from the subsonic to the supersonic
ranges, the variation of the r-dependency of the heat
flux vector is another salient feature described by the
thermal wave model. Such a behavior in transition is
also the same as that for the near-tip temperature.
Together with the swinging phenomenon discussed
above, these important physical phenomena are per-
tinent to the thermal wave model.

Although the thermal shock formation is a direct
consequence of simulating the thermal disturbance
propagating at a finite speed in the solid, an important
motivation of the present work is to attract the interest
from researchers such that direct evidence for the
existence of thermal shock waves can be established.
In the absence of experimental support for the thermal
shock formation, a qualitative description could be
made by considering a water jet impinging on the
surface of a chunk of sponge as illustrated in Fig. 5.
When the water jet is held stationary, as shown in Fig.
5(a), a distinct water diffusion pattern emanating from
the point of impingement can be observed. When the
water jet is moving with a velocity v as shown in Fig.
5(b), on the other hand, two distinct ‘water lines’ will
be observed instead and they separate the dry area
(moisture undisturbed zone) from the region with
water concentration {moisture affected zone). Because
the wave speed of mass transfer in the sponge is com-
paratively slow, such a phenomenon is easier to
explain according to commonsense. In the problem
involving the heat transfer in the solid, because the
wave speed of heat propagation is much faster than
that of the mass diffusion in the sponge, the experi-
ments become more involved and some advanced
techniques may be necessary. For the present problem
involving a propagating crack tip, the example given
above should also be illustrative because we have
shown that the formation of the thermal shock waves
is similar to that induced by a moving heat source.

An immediate topic followed is to understand the
resulting thermoelastic stress field around the crack
tip. Under regular conditions, a well-known fact in
Linear Elastic Fracture Mechanics is that the near-tip
stress field has a 1//r-singularity as the crack tip is
closely approached. Under the interactions between
the thermal and the mechanical fields, how the tran-

sition of the r-dependency of the thermal field influ-
ence the stress singularity is certainly worthy of study.
We will leave this interesting topic for future com-
munications.
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ONDES DE CHOC THERMIQUE INDUITES PAR UNE FISSURE MOBILE—UNE
FORMULATION DE FLUX THERMIQUE

Résumé—Le phénoméne de choc thermique induit par la propagation rapide d’une fissure dans un solide
a éte récemment étudié d travers une formulation en température (ASME J. Heat Transfer 112, 21-27
(1990)). De fagon a confirmer cette unique approche des ondes thermiques émanant de la lévre de la fissure,
I’étude présente une formulation de flux et examine le méme phénoméne physique d’un autre point de vue.
Les discontinuités du choc thermique résulte de I'accumulation d’énergie dans une direction préférentielle
lorsque la vitesse de propagation de la fissure dépasse la vitesse de propagation dans le solide. En employant
la formulation du flux on étudie la formation du choc thermique, les évolutions de la zone affectée par la
chaleur et la zone thermiquement non perturbée et la transition de la dépendence vis-i-vis de r du vecteur
flux de chaleur dans la transition du nombre de Mach thermique depuis le régime subsonique jusqu’au
régime supersonique. L’analogie entre la température et le flux thermique dans la région proche de la lévre
est établie et le phénoméne de choc thermique est confirmé d’un point de vue théorique.

THERMISCHE SCHOCKWELLEN AN EINER RISSSPITZE—BESCHREIBUNG DES
WARMESTROMS

Zusammenfassung—Mit Hilfe einer thermischen Betrachtung wurde kiirzlich das Phinomen des ther-
mischen Schocks untersucht, der durch einen schnell durch einen Festkdrper laufenden RiB verursacht
wird (ASME J. Heat Transfer 112, 21-27 (1990)). Die vorliegende Arbeit benutzt die Beschreibung des
Wairmestroms, um die besonderen Merkmale weiter zu bestitigen, die aus fritheren Forschungsarbeiten
fir thermische Wellen, die von Rissen herriihren, erhalten wurden. Das gleiche physikalische Phinomen
wird nun von einem anderen Standpunkt aus betrachtet. Die thermischen Schockwellen ergeben sich aus
der Anhédufung von Energie in einer bevorzugten Richtung, wenn dic Geschwindigkeit des fortschreitenden
Risses die Ausbreitungsgeschwindigkeit des Wirmestroms im Festkorper iiberschreitet. Durch Be-
schreibung des Warmestroms im Modell fiir die thermischen Wellen wird in der vorliegenden Arbeit
die Entstehung des thermischen Schocks untersucht, auBerdem das Verhalten der thermisch gestorten und
der ungestorten Zone, sowie der Ubergang der r-Abhingigkeit des Warmestromvektors beim Ubergang
der thermischen Mach-Zahl vom Unterschall- in den Uberschall-Bereich. Die Analogie zwischen Tem-
peratur und Warmestrom im Bereich der RiBspitze wird formuliert, und die Phinomene des thermischen
Schocks werden von einem theoretischen Standpunkt aus bestitigt.

TEIUIOBBIE VIAPHBIE BOJIHBI, HHAYLIHPOBAHHLIE PACITPOCTPAHAIOMENCA
TPENIUHOA—®OPMYJIMPOBKA TEIUIOBOI'O MOTOKA

Amsoramms—B Henasno omy6uxosanno#t paGore (Tpyam ACME, Tennonepenaya 112, 21-27 (1990))
ABNCHMA TEPMIHYECKOTO YAAPA, HHIAYUHMpOBaHHLE GHICTPO pacmpocTpaHmomiclica B TBCPAOM Tese BEp-
IIHHON TPEIHHL, ONHCHIBANCH C IOMONILIO TEMNCPATYPHLIX pestryEH. [{na aamsaclinero noarsepaae-
HENX YCTRHOWICHHMX B 3TOM HCC/ICNOBAHHH YHHKANLHLIX CBOH#CTB TEMNOBMX BOJH, HCHYCKACMBLIX H3
BCpIIHHL TPELIMHLL, B HacTomueH paGoTe mCHOMbLIyeTcs NOTOKOBaN (OPMYIMDOBKA, & 3aTeM Te X¢
QUIMMCCKHE ABJICHAN HCCNERAYIOTCE BOA APYTEM YIJIOM 3pcHHS. Paspuis HEMPEpLIBHOCTH B BHIC TEPMM-
9eCXOro yNapa BO3HHKACT H3-32 HAKOTUICHAN HEPrHH B ONPCACACHHOM HANPABJICHER, KOrA CKOPOCTH

PacTIpOCTPANCHHN

TPOWMHL CTAHOBMTCA GosblIC CKOPOCTH PACHPOCTPRHCHEA Temia B

BEPINEHL
TBepaoM Tee. Hcnons3ys DOTOXOBYIO GOPMYTEPOBXY B MOJEIH TEILIOBOH BOMHBL, MCCIICAYIOTCS pas-
BHTHC TEPMRUECKOTO YAapa, 3B0TIONHA TEPMHTCCKN BOIMYINCHHLIX H HHEPTHAIX 30H H NEPEXON 3aBHCH-
MOCTH BEKTOp2 TEIUIOBOTO NOTOKR OT HAHPARBICHMR r B MCPEXOA Temwiosoro wHcaa Maxa m
JIO3BYKOBOTO B CBEpX3BYKOBON JHANA30H. YCTAHOBIICHA AHAJIOMHA MEXLY TCMICPATYPHLIM H TEILNOBLIM
HOTOKAMH Yy BEPUIMHB! TPCHUMHH, H JAHO TEOPETHYECKOC MOATBEPENCHAC NBNCHHAM TEPMHYECKOro
yaapa.



