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Abstract-The thermal shock phenomena induced by a rapidly propagating crack tip in a solid medium 
was studied recentlv via the temnerature formulation (A&WE J. Heat Transfer 112. 21-27 I1990~~. In 
order to further co&m the urGque features obtained‘in the previous m&h for.the thermal waves 
emanating from the crack tip, the present work ernptoys the gux formation and further examines the 
same physical phenomena from a different viewpoint. The thermal shock discontinuities result from the 
energy accumuiation in a preferential direction as the speed of the propagating crack tip exceeds the heat 
propagation speed in the solid. By employing the flux formulation in the thermal wave model, the present 
work investigates the thermal shock formation, the evolutions of the heat affected zone and the thermally 
undisturbed zone, and the transition of the r-dependency of the heat flux vector in transition of the thermal 
Mach number from the subsonic to the supersonic ranges. The analogy between the temperature and the 
heat flux in the near-tip region is established and the thermal shock phenomena am confirmed from a 

theoretical point of view. 

lNTROOUCTlON 

THE THERMAL wave model describes the process of 
heat transport by wave phenomena propagating at a 
finite speed in the solid. The physical essence of this 
model has been investigated from various points of 
view. They include, for example, a coIlision model 
established on the basis of statistical mechanics 121, 
identification of the analogy between the random walk 
and the diffusion processes [3], modification of ther- 
modynamics with fading memory [4], consideration 
of special relativity for the heat transport process [5, 
61, and an interpretation in terms of kinetic theory of 
molecules 17, 81. In these works, the limitations of 
the thermal diffusion model were also examined from 
different viewpoints. The mathemati~l structure of 
the field equations in the hyperbolic theory of heat 
conduction was also investigated. For a one-dimen- 
sional solid carrying the thermal energy with a finite 
speed, the research developed in this sense includes 
the propagation of thermal waves in semi-infinite 
media [9-121, propagation and reflection in a finite 
medium [U-15], the analytical studies on the wave 
character under high heat flux [16], the effects of sud- 
den change of thermal properties across dissimilar 
media in contact [I?, 181, and the thermal wave 
characteristics across a thin surface layer [19]. The 
wave solutions for the hyperbolic heat conductiqn 
equation were also discussed from both analytical 
[201 and numerical [21, 221 approaches. Generally 
speaking, significant deviations between the diffusion 
and the wave models were found in these studies as 
(i) the transient time is short, (ii) the operational 
temperature is low, and (iii) the temperature gradient 

established in the material volume is large. Condition 
(iii) is a common feature for the problems involving 
an interface between dissimilar materials, high heat 
flux, or a thin surface layer. 

In a recent work [I 1, the fundamenta1 characteristics 
of the thermal wave in the vicinity of a moving crack 
tip were investi~t~. The near-tip fe~ra~fe was 
obtained around the crack tip subjected to a tem- 
perature-specified condition at the crack surfaces. The 
major findings in ref. [l] can be summarized as 
follows. (1) The thermal field around the moving 
crack tip can be characterized by a thermal Mach 
number (M) which weighs the ratio of the crack speed 
(u) to the heat propagation speed (C) in the solid. 
Math~ati~~ly, M = vJC. (2) At the ~T~~~c and in 
the supersonic ranges with tW 2 1, t~er~~s~ck waves 
are present in the physical domain which separate the 
heat aficted zone from the thermally undisturbed zone. 
(3) For cases with M 2 1, the physical domain of the 
heat affected zone is 0 d 6 G sin-’ (l/M), with the 
angle B being measured from the crack surface. The 
thermal shock waves are located at 8 = &sin-’ (l/M) 
which is defined as the thermal shock angle. (4) The 
near-tip t~~atu~ has a discont~u~ but finite 
change across the surface of the thermal shock wave. 
It jumps from a value of 4(MZ- 1)/M* in the heat 
affected zone to the reference value in the thermally 
undisturbed zone. As the thermal Mach number M 
approaches infinity, the limit value of the dis- 
continuity across the shock surface is 4. (5) In tran- 
sition of the thermal Mach number from the subsonic, 
transonic, to the supersonic ranges, the r-dependencr 
of the near-tip temperature switches from r”‘, r, to 
r2. As the radial distance r measured from the crack tip 
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NOMENCLATURE 

A, B arbitrary constant in the eigenfunction Y transformation function on the 

Jw) independent variable 0 
c parameter used in the thermal wave I- time function in the near-tip tem~rature 

equation, 42~ [m-‘1 distribution 
C speed of heat propagation in the solid I: transformed variable from 0 

[m s-‘1 dummy variable of integration 

CP heat capacity [w kg-’ “C-‘] x polar angle of the moving coordinate 
k thermal conductivity [w m-’ ‘C-‘1 system [deg] 
M thermal Mach number, v/C I eigenvalues, exponent of r for the angular 
n integer in the expression of eigenvalues variation of near-tip temperature 
q, qj heat flux vector and its components in the gi moving coordinates centered at the crack 

ith direction wrn-*] tip,i= 1,2[m] 

_ ei angular variations of the near-tip heat P mass density [kgmV3] 
flux components, i = I, 2 @ transformation function on the 

r, 0 polar coordinates centered at the crack tip dependent variable H 
R instantaneous radius of curvature of the 0 angular velocity of the moving crack 

crack trajectory [m] [rad s-l]. 
S exponent of r for heat flux vector 
S general heat source term [w m-9 
1 physical time [s] 

Other symbol 

T temperature [‘C] 
v gradient operator [m-‘1. 

u speed of the moving crack [m s-‘1. 
Subscripts and superscripts 

Greek symbots ( ),i a/a&, i = 1,2 
u thermal diffusivity [m2 s-‘1 ( )O quantity in the thermal diffusion model. 

approaches zero, the tem~rature gradient presents a 
I/,/r-singularity only in the subsonic range with 
M < I. These salient features are pertinent to the 
thermal wave model and cannot be depicted by the 
thermal diffusion model. 

In the present study, the physical phenomena sum- 
marized above from (I) to (5) are to be further exam- 
ined by considering the heat flux field around a crack 
tip propagating at various speeds in the subsonic, 
transonic, and supersonic ranges. lkcause the heat 
flux vector is related to the temperature by an integro- 
differential equation in the thermal wave model 
(refs. [I, 23-253 for instance), the flux formulation 
employed in this work is especially useful if a flux- 
specified condition iS: involved at the crack surfaces. 
This special feature of the thermal wave model has 
been clearly indicated by Franked ef al. [251. 

In summary, the energy and constitutive equations 
in the thermal wave model are 

--V--Ifs = pc,q 
(W2h,t+q = -kVT (Ia) 

where p is the density of the medium, k the thermal 
conductivity, C, the heat capacity, S the body heat 
source, a the thermal diffusivity, and C the finite speed 
of heat propagation in the solid. Eliminating either 
temperature T or heat flux q from these equations, 
respectively, results in a field equation with flux (a) or 
temperature (r) representations 

9Iv-qI-VS = (l/a)[(a~C*~.,~+q.~l WI 

av’Tf(IlpC,)[Sf(a/C*)S.,l = (W*)?,,+T,. 
04 

An apparent heat source term containing the first- 
order derivatives of S with respect to space in the q- 
representation and that with respect to time in the T- 
representation are obtained. 

HEAT FLUX FORMUtATION 

The geometrical ~onfig~tio~ of the moving crack 
under study is shown in Fig. 1. The crack is assumed 

FICL 1. Geomttrical conf?guration of a moving crack and the 
material coordinate system convecting with the crack tip. 
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to be in the macroscopic level and propagating with where a thermal Mach number M weighing the ratio 
constant linear and angular velocities (u and W% respec- of the crack propagation speed to the heat propa- 
tively) along a smooth but arbitrary trajectory in an gation speed, i.e. o/C, in the solid has been introduced 
infinite medium with finite speed of heat propagation. and c a parameter defined as u/2a. As the crack is 
The coordinates 4, with i = 1, 2 are the Lagrangian stationary (u = a~ = 0) or the speed of heat propa- 
coordinate system convecting with the crack tip which gation in the solid approaches infinity (C -+ r)), M 
are respectively the instantaneous tangent and normal approaches zero and equation (6) is reduced to that 
to the crack surface. ~plo~ng the thermal diffusion model. 

Employing the thermal wave model, the use of q- 
or T-representations depends on the type of boundary 
conditions. This is a situation resulting from a com- 
plicated integr~iffe~ntial relationship between the 
temperature and the heat &IX vector in the hyperbolic 
wave model 

By noticing that the <,-axis is always normal to the 
propagating crack, the eigenstate of equation (6) for 
the heat flux components qr are to be determined sub- 
ject to the boundary conditions 

4i = - (C2k/a) exp (-Pr/a) 

x : T,(q) exp (C’~/~) dtt. 
i 

(2) 

In an earlier work [l], the T-representation has been 
adopted to investigate the near-tip behavior of tem- 
perature around a moving crack tip with temperature 
specified at the crack surface. For the same crack 
subject to a j%zc-spc&!ied surface condition, on the 
other hand, the q-representation of the energy qua- 
tion is more convenient to use [2q which has been 
shown by equation (1 b) 

eV(V l qi) = WC ’ bktt + 9.t (3) 

where the energy dissipating from the crack tip into 
the surrounding continua has been assumed to be 
negligible, namely S(X,, t) = 0, during the formation 
of new crack surfaces. Under a description made by 
an observer moving with the crack tip, referring to 
Fig. 1, the Galilei transformation 

q2=0 at e,=O and {,<O (7) 

92.2 = 0 at 52 =O and e, >O (8) 

due to the s~rnet~ of the problem. In the sequel we 
shall call the boundaries specified by equations (7) 
and (8) the trailing and the leading edges of the moving 
crack tip. 

THE NEAR-TIP BEHAVIOR OF THE HEAT 
FLUX COMPONENT q2 

t, =X,-W and {,=x, (4) 

can be applied and the time derivatives on the right- 
hand side of equation (3) are replaced by the material 
derivatives 
4.1 ~q.,-~q.l-~(c,q.l-e,q,,) 

as +4,rr--2vq,l +~2B,, --w ~,k.t2-GJ--WC2k*,2 

+w., -~5,9.221+&2h.r, -@-42h*,, -w.t 

-~tte*,2l+~ff2e,,-C,s,t21 

f~~K,4.rt+q.2-t2q,,,l. (5) 

Subscripts i and t denote the differentiations with 
respect to the spatial coordinates <, and the time vari- 
able t, respectively. In terms of the indicial notations, 
then, the combination of equations (3) and (5) yields 

or4JJI = eM’%., I + ((aiC2)9,~1,,-(na21e)9f.,r) 

+(Qi.r--vq,,)--oit’,qr.2-CT24t,,) 

+ W2/2C~lIC2[4L,, -(~-42k,* -04i2 

-~e,~~.l2l-t114~.~2-l(~--We2~~~*,2+041,, 

-~~,Q~221-~~19~~2-t29~,,~ 

+vtqi.2+C,qj.,2-t24,,,>) 8) 

The field equation (6) is a partial differential qua- 
tion with variable coefficients. A general. form of the 
analytical solution is diicult to obtain. It should be 
noted, however, that the near-tip solution in the prob- 
lem with a crack always gives the most important 
information. Such a solution does not only provide 
characteristics of the physical quantities varying in the 
neighborhood of the crack tip, but also an efficient 
algorithm of using singular tip elements in the finite 
element method [26]. In this section, therefore, we 
shall make an attempt to find a particular solution 
satisfying equations @i)-(8) as the crack tip is closely 
approached. 

A product form of the solution for q, is sought 

q,(r, 0, t) = rT(t)Q,(@, i = I,2 (9) 

with I and 8 being the polar coordinates centered at 
the crack tip and I”(t) and Q&l) the functions govern- 
ing the time and the angular dependencies of the near- 
tip heat fiux components. The coordinates (r, 0) are 
especially useful in describing the state of affairs in 
the vicinity of the crack tip. As usual, their gradients 
relate to those in the & coordinates according to 

4(, I = @OS flh, - (sin Wh.0 
and 

9i.2 = (sin e)qt, + (cos e/r)9~,~, etc. (10) 

Substituting equations (9) and (IO) into equation (6), 
the r-&re&flcy of the terms involved in the resulting 
equation can be summarized as follows : 

q/Jr, %.I, Or r’-‘; 



880 DA Yu Tzou 

Muitipl~ng the entire equation by r’+, we can see It is a second-order ordinary differential equation with 
that the terms pro~~onal to r’- ’ and r’ are pro- variable coefficients which has to be solved subject to 
portional to r and rz, respectively. As r approaches the boundary conditions 
zero, i.e. in the immediate vicinity of the crack tip, 
these terms vanish and the asymptotic form of equa- Q 2,8 = 0 at 0 = 0 and QZ = 0 at 8 = IL (18) 

tion (6) reduces to as derived from equations (7) and (8). In obtaining 

qjJi = M’q,,,, with i,j = 1,2. (12) 

They are the dominant terms appearing originally in 
equation (6) and equation (12) is valid for any func- 
tion of r(t). The near-tip heat liux com~nen~ are 
characterized by a single parameter M. The time-inde- 
pendence of this equation indicates that the near-tip 
characteristics of q, are the same for a crack pro- 
pagating in either the transient or steady state. Also, 
we notice that the angular velocity w of the moving 
crack with smooth trajectory has a higher order effect 
on the thermal field around the crack tip. These fea- 
tures of the near-tip solution are similar to those found 
for the displacement field by Achenbach and BaZant 
[27] and the near-tip temperature of ref. [I]. 

Equation (12) can be expressed explicitly in terms 
of its components 

(1 -M%.,, s’qz.12 = 0 (13) 

4t.~2+4r22-M242,tr = 0. (14) 

In a similar manner to that for obtaining the T- or 
the q-representation for the energy equation, a single 
equation governing q2 can be obtained by eliminating 
q, from equations (13) and (14). Combining the 
differentiation of equation (13) with respect to e2 and 
that of equation (14) with respect to < ,, we obtain 

q2.,22+fl--M2k2.1t, =o. WI 

A particular form for this equation is 

q2.22f(l-M2)q2.11 = 0 or V2q2 = M2q2,t, 
(16) 

an analytical solution for Q2(0) satisfying equation 
(17), the method proposed previously involves a 
transformation on the dependent variable from Q2 to @ 

Q2(@ = (I- M2 sin* 6)S 2to(9) (19) 

and another transformation on the independent vari- 
able from 0 to 7 governed by 

(l-M’sinZB)y,,-(M2sin2B)y.e = 0. (20) 

The function ~(6) and the resulting form of equation 
(17) after these ~ansfo~ations depend on the ther- 
mal Mach number of the moving crack. 

(a) Subsonic rage with M < 1. In the case of 
M -c 1, the function y(0) satisfying equation (20) can 
be integrated to give 

r(0) = tan-’ [(l--M’)’ 2 tan81 

and consequently 

y,@ = (1 --~W~)r;~/(l -M’sin* e). (‘3) 

This is the transformation observed by Achenbach 
and Batant [2T] for the out-of-plane displacement 
field around a moving crack tip. Similar to the pre- 
vious problem involving the near-tip temperature [I]. 
it is derived analytically from equation (20) for the 
present problem. The resulting Q, function in the 7 
space takes a simple form in this case 

CD., +s2@ = 0. (22) 

Subject to boundary condition (18) represented in 
terms of functions Q, and 7 

which is sufficient for our purpose as far as the eigen- @,? = 0 at y=O and cD=Oaty=fx (23) 
state of the near-tip heat flux is concerned. One should 
notice that equation (16) will transit from a parabolic, the solution for Qp can be obtained immediately as 

elliptic, to a hyperbolic type as the thermal Mach 
number transits from the subsonic (M c l), transonic 

@=ACOSSJ (24) 

(M= 1), to the supersonic (M > 1) ranges. Some with A being the arbitrary constant in an eigenvalue 

intrinsic variations of the near-tip behavior of q2 are system and the eigenvalue s satisfying the following 

thus expected in such a transition. Equation (16) has equation: 
the same form as that governing the near-tip tem- 
perature around the crack tip [l]. The method of 
variable transformation proposed in the previous 
study can thus be extended to the present problem in 
the full range of the thermal Mach number. 

Substituting equation (9) for q2 into equation (16), 
and applying the chain rule given by equation (lo), 
the angular distribution Q2(@ is found to be governed 
by the following equation : 

(1-M2sin28)Q,,-[M*(l--s)sin20]Q,, 

+~~~+M2~(2-~)cos2~-l]~Q~ = 0. (17) 

s = (2n + 1)/2, with integer n = 0, 1,2,. . , (25) 

The fundamental mode possessing the lowest eigen- 
value, namely s = i/2 corresponding to n = 0, domi- 
nates the near-tip behavior of q2. As r approaches 
zero in the vicinity of the crack tip, we notice that the 
terms of r’, with s being shown in equation (25) but 
n # 0, will approach zero faster than that of r’j2. Sub- 
stituting equation (24) into equation (19) and taking 
the inverse transformation from 7 to 8 according to 
equations (21), the final form of the solution for Q#) 
is 
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FOG. 2. Angular variations of the near-tip heat flux q2 at 
thermal Mach numbers M = 40.1, OS, and 0.9-subsonic 

rangewithM< 1. 

Q2(6) = A[(1 -M’sirP ~)‘~*+cosO]‘~*/,/2, 

for M = 1 (26) 

which governs the angular dis~bution of q2 in the 
core region. The corresponding expression in the ther- 
mal diffusion model can be retrieved by substituting 
M by zero in equation (26) 

Q:(O) - A[l+costI]“*/J2. (27) 

This expression is valid for either a stationary crack 
(u = 0) or a medium with the heat propagation speed 
being infinity (C + co). In the present case with 
M c 1, it should be noted, referring to equation (9), 
that the gradient 4q2/8r in both the thermal wave 
and the thermal diffusion models displays a near-tip 
behavior of l/,/r. 

The graphical representations for Q*(O) and 
Q:(6) with A being unity are shown in Fig. 2. The 
angle 8 is measured from the leading e&e of the 
moving crack. As expected, the deviation between the 
two models becomes sig~~~nt as the thermal Mach 
number increases. For all the cases with M = 0 (the 
diffusion model), 0.1, 0.5, and 0.9, the temperature 
reaches its maximum at the leading edge of the moving 
crack at 6 = 0”. Also, the Q,-function (and hence the 
magnitude of the heat flux component q2) decreases 
as the thermal Mach number increases. 

(b) Supersonic range with M > 1. For the same 
crack moving to the right at a speed faster than that 
of the heat propa~tion in the solid, equation (19) 
can still be used but the distribution of Q2<6) under 
investigation must be confined to the domain of 

OCO<sin-‘(l/M) or 

0 Q 8 d tan- ’ [l/(&f* - 1) ‘/*I (28) 

with 8 being measured in the present case from the 
trailing edge of the moving crack, as shown in Fig. 

FIG. 3. Angular variations of the near-tip heat flux qz at 
thermal Mach numbers M = 1.5, and lO--supcrsonic range 

withM> 1. 

3. For M > 1, alternatively, the transformation v(6) 
satisfying equation (20) takes the form 

y(e) 3: fln(f(M2-l)1t2~n8+l]/ 

Y.e = w* - 1) ‘I*/( 1 -M* sin2 0). (29) 

The corresponding equation to equation (22) for the 
@-function can be found as 

Q*rY -s*Q,=O, for A4> 1. (30) 

Obviously, the eigenvalue system formuiated pre- 
viously for M < 1 has a dramatic change for the pre- 
sent case. We first notice that the physical domain 
represented by equation (28) for A4 > 1 is identical to 
that for the heat affected zone induced by a moving 
crack subject to a temperature-spec$ed condition at 
the crack surface [I]. Therefore, it is informative to 
conclude that the d~t~bution of q2 in the hear a&&ted 
zone is governed by equations (19), (29), and (30). 
While the heat flux components stay at the initial 
value (assumed to be zero without loss in generality) 
in the rest of the physical domain which is defined as 
the thermally undisturbed zone. The heat affected zone 
and the thermally undisturbed zone are separated by 
a thermal shock wave located at 8 = sin-’ (l/M) mea- 
sured from the tr~~t~ edge of the moving crack. This 
is another identical result for a moving crack subject 
to either a temperature- or a flux-specified condition 
at the crack surface. 

Defining now a parameter { 

l(e) = [l+(M2-l)1~2tan8]/[i-((M2-l)1~2tan0] 

(311 

such that from equation (29) 
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(32) 

with i = J- t and C being greater than zero for 0 in 
the domain of the heat a&&d zone specified by equa- 
tion (28). The solution of equation (30) in terms of 
the variable C can then be obtained as 

~(~~~)~ = cos (~~2) (A exp is In (C)/2) 

+Bexp[-~l~~~~/2~~ 

=i- i sin (~/Z)~~ exp [s In (c)/2] 

-Bexp[-sln(1)/2]). (33) 

Eased on the argument that the heat Aux vector must 
be real, equation (33) gives 

sin(sn/2)=0, or s=2n with n=1,2,3 ,... 
(34) 

For a ~o~nt~~a~ sol~don, t~~fo~, the towest eigen- 
value s in the supersonic case is 2. This result intrin- 
sically varies the near-tip behavior of the heat flux 
component q2. In the subsonic range with &f < 1, the 
r-dependency of q2 is Jr. While in the supersonic 
range with N > 1, such a d~nden~ transits to t2 
which cannot be depicted by the thermal diRusion 
model. NO&X also that only one boundary condition 
at 6 = 0 (the trailing edge of the moving crack), or 
< = I and y = &i(n/Z) according to equation (32), 
remains in the present case with M % 1 

Q? = 0 at y = fi(nj2) and I = 1. (35) 

Another boundary at 8 = x (the leading edge of the 
moving crack) stays in the thermahy undisturbed zone 
and the symmetrical condition a,? = (0, = 0 is auto- 
matically satisfted for a uniform distnbution of q2 
being xero (the reference value), Substituting equation 
(33) into equation (35) renders a result of A = -B. 
The #-function in the supersonic range is thus 
obtained as 

~(~(~)~ =I B t - ; 
( ) 

(36) 

with B beiig an arbitrary constant. Combining equa- 
tion (19) for s = 2 with equation (36) then gives the 
angular distribution Q&I) in the heat affected zone 

Q*(e) = B(f -M2 sin2fJ) 
( > 

4 - [ (37) 

which, upon su~~tution of equation (31), can be 
expressed in terms of the variable B 

Q2@) = 2B(M2 - I)“” sin (2@), for M > I. (38) 

‘Note that as the thermal shock wave is approached 
from the site in the heat af%cted zone, namely 8 + 
sin-’ (l/M), the q~ntity of sin appeases 
2(N2- l)i1’/M2 and we have 

Q*(S) 44B&%f2- t)/M’, as 6 -+ sin-’ (T/M). 

aa 

Q 

FIG. 4. Angular variation of the aear-ti~ heat dux q2 at the 
transonic stage with M = 1. 

Equation (39) shows that the heat 3ux ~rn~n~t q2 
remains bounded at the thermal shock wave located 
at 6 = sin-” (I/M) with M > 1. It has a limit value of 
43 as h4 approaches i~~ty. We also notice that the 
heat flux component q2 is discontinuous but finite 
across the surface of the thermal shock wave. As the 
thermal Mach number increases, the Q2-function rep 
resented by equation (38), and hence the heat fiux 
eminent q2 accordin to equation (Q), increases. 
Together with the result obtained previously in the 
subsonic range that the rna~t~~ of q2 decmases as 
the thermal Mach number incr~, this is a ~~~ 
phenomenon simihu to that being found for the tem- 
perature va~atjo~ in tmnsidon of the thermal Mach 
number from the subsonic to the supersonic ranges 
fl]. These phenomena are shown in Fig. 3 with N 
being 2,5, and 10 in the supersonic range. 

(c) Traawdc stage with M TJ 1. As the speed of 
the mo~ng crack is the same as that of the beat proPa 
@ion in the solid, the transformation ~(0) degener- 
ates into the form of 

r(e) = tan& (40) 

The equation governing the ~function in this case 
becomes 

@.qY = 0 

which possesses a solution of the form 

(41) 

@(y) = Ay+B. (42) 

The angle #, similar to the supersonic case with N > I, 
is measured from the trailing edge of the moving crack 
as shown in Fig. 4. The transonic case is the one for 
the onset of thermal shock fo~ation. According to 
equation (28), a normal shock starts to form at 
0 1~ 90” in the present case with N = 1. The heat 
afIected zone co~~ndy ranges from 0” to 90” mea- 

(39) sured from the crack surface. Only the boundary con- 
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dition at 0 = O”, or y = 0 according to quation (40), 
needs to be considered 

Q-0 at y=O. (43) 

From equation (42), we have B = 0 and A an arbitrary 
constant. Determining the values of s at the transonic 
stage relies on the argument made on the botu&&ress 
of the heat flux across the shock surface. This is a 
general feature obtained in the supersonic range 
(referring to equation (39)) and should be satisfied as 
the thermal Mach number approaches 1. Substituting 
equation (40) into equation (42) and the result into 
equation (19), the Q,-function is thus obtained 

Q,(0) = Aco#gtanB, for M= 1. (44) 

Obviously, the lowest value of s must be qua1 to 1 
such that 

Q*(e) = A sin 9, for M = 1 (45) 

and the angular distribution of Q&9) remains 
bounded as 0 approaches 90”. Again, we notice that 
the r-dependency of q2 represented by equation (9) 
switches from r”’ to r as the thermal Mach number 
transits from the subsonic range to the transonic stage. 
It further switches to r2 as the thermal Mach number 
transits into the supersonic range. The graphical rep- 
resentation of Q#) at M = 1 is shown in Fig. 4. 

For the supersonic (case b) and the transonic (case 
c) cases with M > 1, as shown in Figs. 3 and 4, the 
magnitude of Q2(6) in the heat affected zone decays 
from the thermal shock wave to the trailing edge of 
the moving crack. 

DISCUSSIONS 

The angular distribution of tk heat&x component q, 
The function of Q,(e), referring to equation (9), 

governing the angular distribution of the heat flux 
component q1 around the crack tip can be found 
according to the corresponding expressions of Q&I) 
in the respective ranges of the thermal Mach number. 
With the assistance of equation (IO), substituting 
equation (9) for i = 1 and 2 into quations (13) and 
(14) renders a set of coupled equations for Q , and Q2 
in the near-tip field. Eliminating the terms containing 
Qre in these equations then gives a first-order ordinary 
differential equation governing Q , (0) 

(l-~2sin2~)Q,,~ + ~~sin2~)Q, = SQ2 (46) 

where the function Q,(0) is the corresponding 
expression in the subsonic (equation (26)), tran- 
sonic (equation (45)), and supersonic (equation (38)) 
ranges. This equation has an integrating factor 
(l-M2sin2@-*2 and its solution can be obtained 
innately as 

Q,(e) = ~(l-N*si38)+” 

x 
Is 

Qr(#(l -M* sin’ &t’“’ 2ti21 dq. (47) 

Tk r-dependency of iJq/ar 
On employing Fourier’s law of heat conduction, the 

heat flux vector has the same r-dependency as that of 
the temperature gradietzt dT/dr, as shown by Sih (281 
for example. On employing the thermal wave model, 
on the other hand, the r-dependency of the heat flux 
vector is the same as that of the temperature itsetf. 
This can be seen by comparing the present results with 
those obtained previously for the near-tip temperature 
[l]. The rdependency of dq/dr depends on the thermal 
Mach number of the moving crack. It switches from 
I/,/r to r as the thermal Mach number transits from 
the subsonic to the supersonic ranges. At the transonic 
stage with M = 1, dq/& is inde~ndent of r. As the 
radial distance r approaches zero, the quantity &@ 
presents a l/,/r-singularity only in the subsonic range 
with M < 1 while it is bounded at the transonic and 
in the supersonic ranges with M 3 1. This result shows 
that as the speed of the moving crack exceeds the heat 
propagation speed in the solid, the thermal energy 
accumulated at the crack tip is not as pronounced. 

CONCLUSIONS 

Due to the similarity of the mathematical structures 
between the temperature (2’) and the heat flux (q) 
formulations, the physical phenomena of thermal 
shock formation are identical for a moving crack sub- 
ject to either a temperature- or a flux-specified con- 
dition at the crack surface. The thermal shock wave 
starts to form at the transonk stage and sweeps 
toward the trailing edge of the moving crack as the 
thermal Mach number further increases to the super- 
sonic range. The thermal shock angle is obtained as 
sin-’ (l/M) for M B 1 and the physical domain of the 
heat affected zone is found to be 0 6 0 d sin-’ (l/M) 
with the angle 8 being measured from the crack 
surface. The heat flux components in the heat affected 
zone are represented by the combination of equations 
(9), (38), (45), and (47) while they stay at a reference 
value in the thermally undisturbed zone. Similar to 
the temperature in the near field of the crack tip, the 
near-tip heat flux also has a discontinuous but finite 
change across the surfaces of the thermal shock wave. 
This is clearly shown by equation (39). 

Generally speaking, the physical phenomena of 
thermal shock formation induced by a moaing crack 
are quite similar to those induced by a moving heat 
source [23, 241. The difference, however, lies in that 
both the temperature and the heat flux vector 
approach i@nify as the thermal shock wave induced 
by a moving heat source is approached from the site in 
the heat affected zone, while these physical quantities 
keep finite thereby if the thermal shock wave is 
induced by a moving crack. In transition of the ther- 
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sition of the r-dependency of the thermal field influ- 
ence the stress singularity is certainly worthy of study. 
We will leave this interesting topic for future com- 

(r) (b) 

FIG. 5. A chunk of sponge impinged by (a) a stationary water 
jet and (b) a moving water jet with a velocity o. 
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mal Mach number from the subsonic to the supersonic 
ranges, the variation of the r-dependency of the heat 
flux vector is another salient feature described by the 
thermal wave model. Such a behavior in transition is 
also the same as that for the near-tip temperature. 
Together with the swinging phenomenon discussed 
above, these important physical phenomena are per- 
tinent to the thermal wave model. 

Although the thermal shock formation is a direct 
consequence of simulating the thermal disturbance 
propagating at a finite speed in the solid, an important 
motivation of the present work is to attract the interest 
from researchers such that direct evidence for the 
existence of thermal shock waves can be established. 
In the absence ofexperimental support for the thermal 
shock formation, a qualitative description could be 
made by considering a water jet impinging on the 
surface of a chunk of sponge as itlustrated in Fig. 5. 
When the waterjet is held stationary, as shown in Fig. 
5(a), a distinct water diffusion pattern emanating from 
the point of impingement can be observed. When the 
water jet is moving with a velocity v as shown in Fig. 
5(b), on the other hand, two distinct ‘water lines’ will 
be observed instead and they separate the dry area 
(moisture undisturbed zone) from the region with 
water concentration (moistu~ affected zone). Because 
the wave speed of mass transfer in the sponge is com- 
paratively slow, such a phenomenon is easier to 
explain according to commonsense. In the problem 
involving the heat transfer in the solid, because the 
wave speed of heat propagation is much faster than 
that of the mass diffusion in the sponge, the experi- 
ments become more involved and some advanced 
techniques may be necessary. For the present problem 
involving a propagating crack tip, the example given 
above should also be illustrative because we have 
shown that the formation of the thermal shock waves 
is similar to that induced by a moving heat source. 

An immediate topic followed is to understand the 
resulting thermoelastic stress field around the crack 
tip. Under regular conditions, a well-known fact in 
Linear Elastic Fracture Mechanics is that the near-tip 
stress field has a I~~~-singula~ty as the crack tip is 
closely approached. Under the interactions between 
the thermal and the mechanical fields, how the tran- 
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ONDES DE CHOC THERMIQUE INDUITES PAR UNE FISSURE MOBILE-UNE 
FORMULATION DE FLUX THERMIQUE 

R&snm&Le phCnomine de choc thermique induit par la propagation rapide dune fissure dans un solide 
a Cte r6cemment &die i travers une formulation en temp6rature (ASME J. Heat Tramfer 112, 21-27 
(1990)). De fa9on i confirmer cette unique approche da ondes thermiques emanant de la l&e de la fissure, 
I’Ctude p&ente une formulation de flux et examine le mame phCnom&ne physique dun autre point de vue. 
Les diiontinuit& du choc thermique r&the de l&cumulation d%nergie dans une direction prCI&entielle 
lorsque la vitesse de propagation de la fissure d&am la vitesse de propagation dans Ie solide. En employant 
la formulation du flux on Ctudie la formation du choc thetmique, les evolutions de la zone affect& par la 
chaleur et la zone thermiquement non perturb&e et la transition de la dependence vis-&is de r du vecteur 
flux de chaleur dans la transition du nombre de Mach thermique depuis le regime subsonique jusqu’au 
regime supersonique. L’analogie entre la temp&ature et le flux thermique dans la r&ion proche de la l&e 

est Ctablie et le phCnom&ne de choc thermique est confirm6 dun point de vue thiorique. 

THERMISCHE SCHGCKWELLEN AN EINER RISSSPITZE-BESCHREIBUNG DES 
WARMESTROMS 

Zusamme&asaung-Mit Hilfe einer therm&hen Betrachtung wurde kiirzlich das PhPnomen des ther- 
mischen Schocks untersucht, der durch einen schnell durch einen Festkijrper laufenden RiB verursacht 
wit-d (ASME J. Hat Transfer 112,21-27 (1990)). Die vorliegende Arbeit benutzt die Beschreibung des 
WHrmestroms. urn die besonderen Me&male we&r zu besbitigen, die aus friiheren Forschungsarbeiten 
fIir thermische Wellen, die von Rissen herChren, erhalten wurden. Das gleiche physikalische Ptinomen 
wird nun von einem anderen Standpunkt aus betrachtet. Die thermischen Schockwellen ergeben sich aus 
der Anhgufung von Energie in einer bevorzugten Richtung, wenn die Geschwindigkeit des fortschreitenden 
Rimes die Ausbreitungsgeschwindigkeit des Wiirmestroms im Festki%per iiberschreitet. Durch Be- 
schreibung des Witrmestroms im Modell fiir die therm&hen Wellen wird in der vorliegenden Arbeit 
die Entstehung des therm&hen Schocks untersucht, at&&m das Verbalten der thermisch gestiirten und 
der ungest6rten Zone, sowie der obergang der r-Abhiingigkeit des W5rmestromvektors beim U&gang 
der thermischen Mach-Zahl vom Unterschall- in den Obcrschall-Bereich. Die Analogie zwischen Tem- 
peratur und Wgrmestrom im Bereich der RiBspitze wird formuliert. und die PhPnomene des therm&hen 

Schocks werden von einem theoretischen Standpunkt aus be&it&. 

TEMOBbIE YjIAPHbIE BOJIHbI. HH~POBAHHbIE PACI-IPOCTPAHXKKIIEHCX 
TPEIIJHHOtf-U0PMYJIHPOBKA TEI-IJIOBOI-0 IIOTOKA 

-B ne~(aasto ony6~1~~oaamtoil pagore (T~~JIIJ ACME, Tennonepenawi 112,21-27 (1990)) 
aaJmnBa voro Yaepa, Hanyrarpoaa== 6crpopacnpocrpplunwcllcra~t~~n0~~=p- 
tuimoll v ollsl~~~mc~ c aonsoatbr0 re~meparyIB5rx B~BB~B~ &JIB b aoIIIIKpII&- 
BBB yclBBoBJmHBux B 3rOM BccJtenoBa5B yarnururvx cBoRorB lwJroBHx BoJt& BcnycBBebrBu B3 
BepumBu n B BBcToBIlmn pa6ore BcnOJtB3yelcB ttOTOcoBBB $OpMyJmpOB;pI a salmu TB are 
4s===eBBJ==accncnywrcr nOA npylBM ymosC BpeBBB. PaBIBIB aarpaPB.lBBocrB B BBAe TepMts- 
‘IecBoro yBBpB B w-!Ja EsronneBBB 3BeptBB B OnpencneesoV p sorBB mtOpOcrb 
mBepmB=tsPes==r C’IBEOBBTCB6OJWIBCBOpOCtll~TBlUlBB 
TBB&UIOM ‘TWIB. kiUlOJlb3yB IWl’OCOByrO @OopMymrpoBlQ’ B MOlWlR lWUlOBOit BOJUIBI, II- pBB- 
Em-Be npMB¶ecBoro yAapq 3BOJllOqmB TqmmwaB Bo3M~ P Bliqmmx 30x a llqcxon BBBECE- 
mnxn #LIopp mmoB0rO acrr0Ba or erapurraar r B aepeaozt TtMo~0ro BsscnB Maxa B3 
JlOaByBOBOrO B cBepB3ByBOBOg BlmnaaosL YcTBnoBJmfB BnBJtOrBB rM%Jly mnaIBpBTyp?zHM E TuIJloBm4 
nOToBBMll y aeplnaabl-nmo ~eaperapearoe aonnepxBeBBe B TepMmecBoro 

Ynap% 


